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We consider a planar system of fermions, at finite temperature and density under a static magnetic field
parallel to the two-dimensional plane. This magnetic field generates a Zeeman effect and then a spin polariza-
tion of the system. The critical properties are studied from the Landau’s free energy. The possible observable
consequences of the magnetization of planar systems such as polymer films and graphene are discussed.
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I. INTRODUCTION

Field theories in two spatial dimensions have long been
recognized as important for understanding several physical
phenomena that can be well approximated as planar ones,
such as high-temperature superconductors and the fractional
quantum-Hall effect. In the last years there has been an enor-
mous interest in these two-dimensional systems in
condensed-matter physics. In particular, a large number of
important new phenomena discovered recently in condensed
matter lies in this class. As examples we can cite the metal-
insulator transition �MIT� �Ref. 1� and graphene, an isolated
single atomic layer of carbon, in which electron transport is
essentially governed by Dirac’s relativistic equation.2 It is
then feasible to treat many of these planar �or quasiplanar�
systems in condensed matter in terms of quantum-field-
theory models for fermions in 2+1 dimensions �two space
like and one time like coordinates�.

Among the many field-theory models useful for under-
standing a plethora of phenomena in condensed-matter sys-
tems, those that include a four-fermion interaction have been
extensively used in the context of studies of planar systems.
In particular, Nambu-Jona-Lasino type of models3 in 2+1
dimensions and, among them, the Gross-Neveu �GN�
model,4 have been employed to study these systems. For
example, the GN model has been considered as an appropri-
ate model to study low energy excitations of high-
temperature superconductors5 while analogous models with
generic quartic fermionic interactions have also been used to
study quantum properties of graphene.6

In these planar systems, GN field-theory models for fer-
mionic interactions are commonly used to study their sym-
metry properties, in particular chiral symmetry breaking and
restoration, at finite temperature and densities and also in the
presence of external �magnetic� fields. In this paper we will
be interested in investigating the effects of how an “asym-
metrical doping” can affect the chiral symmetry, or the
metal-insulator transition in a GN type of model for a two-
dimensional system of fermions. An asymmetrical doping
can be defined as an imbalance between the chemical poten-
tials of the electrons with the two possible spin orientations
�“up” �↑ and “down” �↓� inserted in the system by a dop-
ing process. Since the densities of the ↑ and ↓ electrons are
directly proportional to their chemical potentials, an asym-
metrical doping is equivalent to an asymmetry in the chemi-

cal potentials for spin-up and spin-down electrons. This
chemical-potential asymmetry can be produced by the effect
of an external magnetic field parallel to the system’s two-
dimensional plane.

A magnetic field applied parallel to the system’s two-
dimensional plane couples only to the spin of the electrons
but not to the electrons orbital motion. Therefore, Landau
levels that would appear due to the coupling of a �perpen-
dicular to the plane� magnetic field to the electrons’ orbital
motion do not appear here. Instead, the in-plane magnetic
field generates an intrinsic Zeeman effect which polarizes the
system. This is because at zero magnetic field electrons with
spin up and spin down have the same density, but an in-plane
magnetic field, due to the Zeeman effect, causes a difference
between the spin-up and spin-down densities. Recent studies
in the context of graphene7,8 have suggested that the Zeeman
effect can be very important for the electronic properties of
these systems. The intrinsic Zeeman effect is thus useful to
reveal the important role played by the spin degree of free-
dom of the electron and the polarization of the system.9

Here we will focus on the properties of a planar system
modeled by a GN four-Fermi interacting model and study
how a spin-density asymmetry influences on the chiral sym-
metry of the system, i.e., on the role of the Zeeman contri-
bution to the system’s magnetization. The rest of this paper is
organized as follows. In Sec. II, we review the GN model
and the effect of including an in-plane constant magnetic
field and the Zeeman effect. In Sec. III we evaluate the Lan-
dau’s free energy �the effective potential� of the model and
determine how the chiral symmetry is affected by the spin-
density asymmetry. In Sec. IV we determine the magnetic
properties of the system. Finally, in Sec. V we present our
concluding remarks.

II. THE MODEL ACTION

We start by considering a planar four-Fermi model de-
scribing interacting fermions with a Lagrangian density
given by

L��̄,�� = �
s=↑,↓

�̄s�i��t − i�vF�� . �� ��s + �
s=↑,↓

�

2N
�vF��̄s�s�2,

�1�

where �s is a four-fermion field with N flavors and s is an
internal symmetry index �spin� that determines the effective
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degeneracy of the fermions. In Eq. �1� a sum in the flavors is
implicit. For example, for materials such as polyacetylene or
graphene, N=2. We will keep N general throughout this
work for convenience.

In Eq. �1�, � is a coupling term and vF is the Fermi ve-
locity. The gamma matrices are 4�4 matrices and we follow
the representation given, e.g., in Ref. 10 for fermions in 2
+1 dimensions. In this case, the model �1� possesses a dis-

crete chiral symmetry, �→�5�, �̄→−�̄�5, with the �5 ma-
trix defined as in Ref. 10. This discrete chiral symmetry is
the one considered in this paper, along with its breaking and
restoration conditions. Note that it is broken when a gap �or

a nonvanishing vacuum expectation value for ��̄��� is gen-
erated.

It is useful to rewrite the fermion interaction term in Eq.

�1� in terms of a boson field �, in which case L��̄ ,�� be-
comes

L��̄,�,�� = �
s=↑,↓

�̄s�i��t − i�vF�� . �� − ���s −
N

2�vF�
�2.

�2�

� can be seen, for example, as representing the coupling of
electrons to a local value of the dimerization. Equation �2� is
equivalent to Eq. �1� as can be easily verified by using the
field equation for ��x� and substituting it back into the La-
grangian density, reobtaining the characteristic four-Fermi
interaction.

Models of the type of Eq. �2�, or equivalently Eq. �1�, are
of the form of a Gross-Neveu model,4 with applications
found in many areas of condensed-matter physics. For ex-
ample, in one-space dimension, Eq. �2� is the equivalent of
the Takayama-Lin-Liu-Maki model,11 the continuous version
of the model proposed by Su, Shrieffer, and Heeger for
polyacetylene,12,13 in the adiabatic approximation, where lat-
tice vibrations are neglected, and used to study the metal-
insulator transitions in general �see, e.g., Ref. 14, and refer-
ences therein�.

Let us now consider the application of a generic external
magnetic field to the system and its effects. It is convenient
that to start by writing the grand canonical partition function
for the Lagrangian density model �2�,

Z =	 D�

s

D�†D� exp�− SE��̄,�,��� , �3�

where the Euclidean action SE��̄ ,��, from the Lagrangian
density Eq. �2�, reads

SE��̄,�,�� = 	
0

��

d		 d2x �
s=↑,↓

�̄s���	 + i�vF�1

���x + i
e

c
Ax� + i�vF�2��y + i

e

c
Ay�

+ � + �0
 +
�s

2
�0g
BB���s +

N

2�vF�
�2� ,

�4�

where �=1 / �kBT�, kB is the Boltzmann constant, 
 is the
chemical potential, Ax and Ay are the vector potential com-
ponents �e.g., corresponding to a magnetic field perpendicu-
lar do the system’s plane�, B� is the magnetic field parallel to
the system’s plane, and �s�0g
BB� /2 is the corresponding
Zeeman energy term, with �↑=1, �↓=−1, g is the spectro-
scopic Lande factor, and 
B is the Bohr magneton. We must
point out that graphene samples have been recently studied
in strong magnetic fields �up to 45 T�.15 In these experiments
the measured effective g� factors were found very close to
the bare electron g factor �g=2�. In our work developed be-
low, we will not assign a specific value for g and we keep it
also general �like N� for convenience.

By choosing a gauge where the three-dimensional vector
potential is given, for example, by A� = �0,B�x ,B�y�, we see
from Eq. �4� that B� couples to the orbital motion of the
electrons and it will result in the Landau levels for the sys-
tem in this magnetic field. The parallel magnetic field
couples to the electrons’ spin and produces the Zeeman en-
ergy term in Eq. �4�. From the form of the Zeeman energy
term in Eq. �4� we see that it can be added to the chemical
potential, thus defining an effective chemical-potential term
in the action of the form

�
s=↑,↓


s�̄
s�0�s = �

s=↑,↓
�
 +

�s

2
g
BB���̄s�0�s

= 
↑�
↑†�↑ + 
↓�

↓†�↓, �5�

where 
↑=
+�
 and 
↓=
−�
, with �
=g
BB� /2. The
role of 
 can be interpreted as to account for the extra den-
sity of electrons that is supplied to the system by the dopants
while �
 measures the amount of asymmetry introduced and
it is directly proportional to the in-plane applied external
magnetic field. As we explained in the introduction, in this
work we will be concerned with the effects of the Zeeman
term, so from now on we take B�=0 and only consider a
constant in-plane external magnetic field B� �B0.

III. THE SYSTEM’S EFFECTIVE POTENTIAL
UNDER EXTERNAL EFFECTS

In the applications with models of the GN type, we are
mostly interested in studying the effective potential, or Lan-
dau’s free energy, for a constant scalar field configuration �c,
in which case chiral symmetry breaking and dynamical fer-
mion mass generation can be most conveniently studied.
Here, we use the effective potential for �c for studying how
an asymmetry between the up and down fermions’ spins,
generated by the constant in-plane magnetic field, will
change the phase diagram of the model. Possible phenom-
enological applications of these results for systems like, for
example, graphene and planar organic conductors, as poly-
acetylene, will then be discussed.

The effective potential is defined from the grand canoni-
cal partition function �3� by
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Veff = −
1

�V
ln Z , �6�

where V is the volume. Then, from the partition function Eq.
�3� with Eq. �4� and using Eq. �5�, for a constant background
scalar field �c and in the mean-field approximation, which is
the same as considering just the leading terms in a 1 /N ex-
pansion, or the large-N approximation,16,17 we obtain that the
effective potential Veff is given by

Veff��c,T,
↑,
↓�

=
N

2�vF�
�c

2 − NkBT �
s=↑,↓

tr �
n=−

+ 	 d2p

�2���2 ln��− i�n + 
s�

− vF�0�� . p� − �0�c� , �7�

where �n= �2n+1��kBT are the Matsubara frequencies for
fermions. Note that in the absence of asymmetrical doping,

↑=
↓=
, or �
=0, Eq. �7� just reproduces �in the natural
units where �=kB=vF=1� the effective potential of the
Gross-Neveu model in 2+1 dimensions.3

Performing the sum over the Matsubara frequencies and
taking the trace in Eq. �7�, we find

Veff��c,T,
↑,
↓�

=
N

2�vF�
�c

2 − 2NkBT	 d2p

�2���2��Ep +
1

2
ln�1 + e−�E↑

+
�

+
1

2
ln�1 + e−�E↑

−
� +

1

2
ln�1 + e−�E↓

+
� +

1

2
ln�1 + e−�E↓

−
�� ,

�8�

where E↑,↓
� =Ep�
↑,↓ and Ep=�vF

2 p2+�c
2. In terms of the

band structure, we can interpret the result seen in Eq. �8� as
like �
 has lifted the degeneracy of the conduction and va-
lence bands in the matter part of Veff.

At zero temperature and chemical potential and in the
absence of the external magnetic field, Veff becomes

Veff��c� =
N

2�vF�
�c

2 − 2N	 d2p

�2���2
�vF

2 p2 + �c
2. �9�

By using a momentum cutoff � to regulate the vacuum di-
vergent term of Veff��c� and by defining a renormalized cou-
pling �R as

1

�R
=

�vF

N
�d2Vfeff��c�

d�c
2 �

�c=�0

, �10�

where �0 is a renormalization point, that can be chosen, as
usual, as given by the nontrivial minimum of the renormal-
ized effective potential.

In terms of �R, the renormalized effective potential reads
�after subtracting an irrelevant field-independent divergent
vacuum term�

Veff,R��c� =
N

2�vF�R
�c

2 +
N

���vF�2� ��c�3

3
− ��0��c

2� .

�11�

The nontrivial minimum of Veff,R��c� can now be easily
found and it is given by

�0 =
�vF�

�R
. �12�

At �c=�0, the effective potential reads

Veff,R��c = �0� = −
N

��vF�2

�0
3

6�
, �13�

which shows that Veff��c=�0��Veff��c=0�=0. The non-
trivial solution is then energetically preferable for the �un-
doped� system, which then corresponds to a �dynamical� gap,
i.e., the presence of a chiral nonvanishing vacuum expecta-
tion value.

The effective potential at finite chemical potentials and in
the zero-temperature limit, from Eq. �8�, is given by

Veff,R��c,
↑,↓� = Veff,R��c� + N�1	
0

pF
↑ pdp

2��2 �Ep − 
↑�

+ N�2	
0

pF
↓ pdp

2��2 �Ep − �
↓�� , �14�

where Veff,R��c� is given by Eq. �11�, �1,2=��
↑,↓
2 −�c

2� is a
step function, defined as ��x�=0, for x�0, and ��x�=1, for
x�0, and pF

↑,↓ is the Fermi momentum of the ↑�↓ � fermions

pF
↑,↓ =

1

vF

�
↑,↓
2 − �c

2. �15�

By performing the momentum integration in Eq. �14�, we
obtain

Veff,R��c,
↑,↓�

= Veff,R��c� +
N�1

4���vF�2�−

↑

3

3
−

2

3
��c�3 + 
↑�c

2�
+

N�2

4���vF�2�−
�
↓�3

3
−

2

3
��c�3 + �
↓��c

2� . �16�

Minimizing Veff,R��c ,
↑,↓� with respect to �c yields again
the trivial solution ���c�=0� and

��c� − �0 +
�1

2
�
↑ − ��c�� +

�2

2
��
↓� − ��c�� = 0. �17�

Before continuing, lets us specialize to the symmetric limit,
�
=0. In this case Eq. �17� reads ��c�−�0+��
2−�c

2��

− ��c��=0. To solve this equation we need to know the criti-
cal chemical potential 
c at which the symmetry is restored.
This is found through the equation Veff,R��c=0,
c�
=Veff,R��c=�0 ,
c�, which yields 
c=�0. Thus, the ground
state of the symmetric system is characterized by
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�c = �0, for 
 � 
c

0, for 
 � 
c.
� �18�

At and beyond the doping level 
c, we note that the energy
of the fermions is linear, Ep=vFp, characteristic of two-
dimensional gapless systems.18 Considering now the asym-
metrical system case, we see that by applying a constant
magnetic field B0 parallel to the plane, the asymmetry �
 is
increased as B0 increases. We study the asymmetry relative
to 
 and look at the system’s ground state for a given
asymmetry. In Fig. 1 we show the effective potential
Veff,R�� ,
↑,↓� as a function of �c for various asymmetries
0��
 /�0�1. The first curve in Fig. 1 is the effective po-
tential Veff,R as a function of �c /�0 for 
=0.8
c and
�
 /�0=0 with the minimum of Veff,R at �c=�0. The second
curve from top to bottom shows the symmetry restoration,
where 
=
c, and �
 /�0=0. The following curves are for
�
 /�0=0.5 and �
 /�0=1.0. These results, in particular,
show that there is not a value for an asymmetry �
 for which
a new minimum, where �c��
��0, could appear. This is
clearly seen from the third and fourth curves in Fig. 1 �from
top to bottom�, which show that the minimum of the effec-
tive potential is always at �c=0. This result should be con-
trasted with the one obtained for the one-dimensional space
system case recently studied,19 where by increasing the
asymmetry, a new minimum for the effective potential
emerges at a critical chemical-potential asymmetry �
c.
Thus, a nonvanishing and stable gap beyond �
c would ex-
ist, till it disappears completely at �
��
c, through a
second-order phase transition. The absence of this new mini-
mum in our case will be explained below.

Finally, let us now consider the complete renormalized
effective potential at both finite chemical potential and tem-
perature, obtained from Eq. �8� after performing the momen-
tum integrals. It is given by

Veff��c,T,
↑,
↓� = Veff,R��c� +
��c�

2��2 �Li2�− e−���c−
↑��

+ Li2�− e−���c+
↑���

+
1

2��3 �Li3�− e−���c−
↑��

+ Li3�− e−���c+
↑��� + �
↑ → �
↓�� ,

�19�

where Li��z� is the polylogarithm function and it is defined
�for ��0� as20

Li��z� = �
k=1


zk

k� .

From Eq. �19� we can now verify how the Zeeman term,
manifested by the density asymmetry term �
, changes the
usual �for � 
=0� chiral phase transition in the GN model
when both finite chemical potential and temperature are con-
sidered. We start by deriving the gap equation

�

��c
Veff��c,T,
↑,
↓���c=�̄c�T,
↑,
↓� = 0, �20�

which gives

�̄c = �0 −
1

2�
�ln�1 + e−���̄c+
+�
�� + ln�1 + e−���̄c−
−�
��

+ ln�1 + e−���̄c+�
−�
��� + ln�1 + e−���̄c−�
−�
���� . �21�

It can be easily checked that the T=0 limit of the above
equation reproduces the result Eq. �17�. The critical curve

�̄c�T ,
 ,�
�=0, that is obtained from Eq. �21�, in the case
�
=0, just reproduces the known result,10 with a line for a
second-order phase transition in the 
−T plane, starting at
the critical point �
=0, T=Tc�, where kBTc=�0 / �2 ln 2�,
and ending in a first-order critical point at �
=
c , T=0�. By
increasing the asymmetry �the magnitude of the parallel
magnetic field B0� the effect is to promote chiral symmetry
restoration, as can be explicitly seen in Fig. 2.

We can now interpret the nonexistence here of new
minima at 
=
c in the presence of an asymmetry, in contrast
to the findings of Ref. 19 for the one-space dimension case.
This can be traced to the nonexistence of a critical line for
first-order chiral phase transition in the GN model in two-
space dimensions in the mean-field approximation. The
phase diagram of the GN model in one-space dimension, in
the mean-field approximation, has a second-order critical
transition line in the 
−T plane that meets a first-order tran-
sition line at a tricritical point. This is actually a typical
phase diagram seen in many other four-Fermi interacting
models, including Nambu-Jona-Lasino type of models in
three space dimensions. However, this typical phase diagram
was absent in the two-space dimensions GN model until

FIG. 1. The effective potential at zero temperature, Eq. �16�, in
units of N�0

3 / ��vF�2. The top curve �solid line� is for 
=0.8 
c and
�
 /�0=0, with the minimum of Veff,R at �c=�0. The dotted line is
for 
=
c, and �
 /�0=0, with the minimum of Veff,R at �c=�0 and
at �c=0. The following curves are for �
 /�0=0.5 �dashed line�
and �
 /�0=1.0 �dash-dotted line�.
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recently.21 In Ref. 21 it was shown that terms contributing to
the effective potential going beyond the mean-field approxi-
mation would produce a first-order critical line merging with
the second-order critical line at a tricritical point. The effect
of the asymmetry close to the critical point 
c seen in Ref.
19 would then probe the metastable region around the first-
order critical line, manifested by the formation of a new local
minimum in the presence of an asymmetry. The same should
be seen here, if corrections beyond the mean-field approxi-
mation would have been considered. We do not see this for-
mation of a new local minimum close to the first-order criti-
cal point here because the mean-field approximation in the
two-space dimensional GN model misses this metastable re-
gion. We expect, though, that these corrections would pro-
duce a very small effect here. This is because the metastable
region seen in Ref. 21 was considerable smaller than the one
in the one-space dimensional GN model so its contributions
to our derivations should, likewise, be small.

IV. MAGNETIC PROPERTIES

As we have already seen, the imbalance in the chemical
potentials of the ↑ and ↓ electrons are induced by the appli-
cation of a static in-plane magnetic field in the system, with
a Zeeman energy EZ= �g
BB0 /2 and, in the present case,
�
= �EZ�=g
BB0 /2. As a consequence, the number densities
n↑ and n↓, defined by

n↑,↓ = −
�

�
↑,↓
Veff,R��̄c,
↑,↓� �22�

are obviously imbalanced due to the asymmetry between 
↑
and 
↓, and will depend on �
. Likewise, the spin polariza-

tion of the system as a result of the Zeeman effect produces
a net �Pauli� magnetization of the system, which is defined
by22

M�T,
,�
� =
g
B

2
�n↑ − n↓� �23�

and a magnetic �Pauli� susceptibility

��T,
,�
� =
�

�B0
M�T,
,�
� . �24�

Note that the polarization state of the system is deter-
mined by the asymmetry which depends on the intensity of
the applied magnetic field. As we change the magnetic field,
and then the polarization, we expect the magnetic properties
of the system, e.g., the magnetization and the susceptibility,
to change as well. As we are going to see, the change in
behavior can be quite remarkable, mostly when the suscep-
tibility as a function of temperature is concerned.

Let us start by presenting some results for the number
densities for fermions of spin up and spin down, as given by
Eq. �22�. We consider first the case of 
=0 which represents
the undoped system, i.e., the insulating state at which �c
=�0. Since 
=0 we have effective chemical potentials given
by 
↑=�
 and 
↓=−�
. From Eq. �22� and the results of the
previous section, one sees that if �
��0, than n↑=n↓=0,
giving M =�=0. On the other hand, if �
��0, there are
nonvanishing densities but they are always equal �n↑=n↓�
resulting again in M =�=0. This means that the undoped
�insulating� system, for which 
=0, is never magnetized
�polarized� at any temperature. So, let us then consider the
cases where 
�0. In Fig. 3 we show how the spin-up and
spin-down fermion densities �in units of N�0

2 / ��vF�2� change
with the asymmetry �i.e., when the applied magnetic field

FIG. 2. The critical curve �̄c�T ,
 ,�
�=0 for different values of
asymmetry. The top curve �solid line� is for �
=0, while the other
curves are for �
=0.5 
c �dotted line�, �
=0.8 
c �dashed line�
and �
=0.95 
c �dash-dotted line�, respectively.

FIG. 3. The number densities of spin-up and spin-down fermi-
ons as a function of the asymmetry, for 
=0.7�0 and for tempera-
tures kBT=0.5�0 �solid and dashed lines, for n↑ and n↓, respec-
tively� and for kBT=�0 �dash-dotted and dotted lines, for n↑ and n↓,
respectively�.
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increases�, for a chemical potential chosen here, as an ex-
ample, as 
=0.7, 
c�0.7�0 and for temperatures kBT
=0.5�0 �solid and dashed lines, for n↑ and n↓, respectively�
and for kBT=�0 �dash-dotted and dotted lines, for n↑ and n↓,
respectively�. Note that in both cases n↓ initially decreases
with the increasing magnetic field, vanishing at the full po-
larization point 
=�
, as expected, and starts increasing
again beyond that point. This is when the magnetic field
becomes strong enough to be energetically favorable to spin-
down fermions of the filled valence band to be promoted to
the conduction band. This occurs only at finite temperature,
since at zero temperature n↓ is always zero at and beyond the
critical magnetic field Bc �or the full polarization point�.19

Note that the spin-up fermion density always increases with
the applied magnetic field �which is in the same direction of
the spin-up fermions�. The plots also indicate that the rate of
spin-down fermions turning into spin-up ones �below the full
polarization point� as the result of increasing the applied
magnetic field is constant and is approximately the same rate
of promotion �above the full polarization point� of spin-down
fermions of the valence band to the conduction band. An-
other result we can notice from Fig. 3 is that the difference in
the two densities, i.e., the Pauli magnetization Eq. �23�, is
always positive with the increasing magnetic field. This is
true for any other values of chemical potential and tempera-
ture.

Next, in Fig. 4 we present the results for the Pauli mag-
netization, expressed in units of N�g
B /2��0

2 / ��vF�2, for dif-
ferent values of temperature �and again fixing the chemical
potential as 
=0.7�0 for comparison purposes� when the
asymmetry is increased �or, equivalently, in terms of the Zee-
man field B0�. Here we can easily see a clear change in
behavior of the magnetization as the full polarization point is
crossed. The most important observation we can notice from

the results seen in the Fig. 4, it is that below the full polar-
ization point, here given by �
=0.7
c �which is the value of

 that we have considered in the analysis�, the larger is the
temperature, the larger is the rate of increase in the magne-
tization, while has an opposite behavior above the full polar-
ization point. This then will reflect remarkably in the Pauli
magnetic-susceptibility results. As the temperature is in-
creased, the Pauli magnetic susceptibility should as well in-
crease for magnetic fields below of that which gives the full
polarization. Above the full polarization magnetic field, the
magnetic susceptibility should decrease with the increasing
temperature. This is confirmed by the results presented in
Figs. 5 and 6, for the cases below the full polarization point
and at and above it, respectively.

Figures 5 and 6 show the magnetic susceptibility, ex-
pressed in units of N�g
B /2�2�0 / ��vF�2, as a function of
temperature, when the asymmetry is varied from �
=0.1�0
up to 1.1�0, with fixed chemical potential 
=0.7�0. For all
other values of chemical potential we find similar behavior
for ��T ,
 ,�
�.

Analyzing the behavior of the magnetic susceptibility � as
a function of the temperature, we find that, for those cases
below the full polarization point, e.g., Figure 5, in the chiral

broken �insulating� phase ��̄c�0�, � is nonlinear for T�Tc,
where the values of Tc are indicated by the horizontal dotted
line in Fig. 5. This horizontal critical line can be determined
explicitly and it is given by N�g
B�2�0 / �4���vF�2�. When
this critical line is crossed and we go from the broken �insu-
lating� phase to the symmetric �metal� phase, for T�Tc �or

�̄c=0�, the magnetic susceptibility becomes a linear function
of the temperature. Note that the magnetic susceptibility, be-
low the full polarization point, is always an increasing func-

FIG. 4. The Pauli magnetization as a function of the asymmetry,
for 
=0.7�0 and for kBT=0.5�0 �dotted line�, 0.7�0 �dash-dotted
line�, 0.9�0 �dashed line� and 1.1�0 �solid line�.

FIG. 5. The Pauli magnetic susceptibility as a function of the
temperature for 
=0.7�0, for the values of the asymmetry �

�from bottom to top� 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 �in units of �0�.
The dotted line indicates where the phase transition happens.

HERON CALDAS AND RUDNEI O. RAMOS PHYSICAL REVIEW B 80, 115428 �2009�

115428-6



tion with the temperature, as already anticipated by the be-
havior of the magnetization seen from Fig. 4.

As we go above the full polarization point, the magnetic
susceptibility changes again its behavior with the tempera-
ture. We checked that at high temperatures, kBT��0, it goes
exactly as predicted by the Curie-Weiss law,22 ��
��
 ,T
��0��1 /T. The turning point of behaviors for the magnetic
susceptibility, as seen in Figs. 5 and 6, is the full polarization
point 
=�
.

A few analytical results for the magnetic susceptibility
can be obtained explicitly. At zero temperature, for any 

+�
�
c, we find that ��T=0,
 ,�
�=0, while for 
+�

�
c, we find that ��T=0,
 ,�
��0. The two curves from
bottom to top seen in Fig. 5 correspond to the former case,
where 
+�
�
c. For the cases where 
+�
=
c, with 

�
c or �
�
c, which in Fig. 5 corresponds to the third
curve from bottom to top, we find the analytical result for the
magnetic susceptibility at T=0

��T = 0,
 + �
 = 
c��
�
c,�
�
c
=

N�g
B�2

16���vF�2�0. �25�

At 
=
c, for any �
, or 
+�
�
c such that �c=0 �see
Fig. 1�, i.e., in the metal �chiral restored� phase, we find that

��T = 0,�c = 0� =
N�g
B�2

4���vF�2�0. �26�

This, in particular, corresponds to the values of parameters
determining the critical line seen in Fig. 5. The full polariza-
tion point can be reached for various dopings and in-plane
magnetic fields, i.e., always that 
=�
, in which case 
↓
=0. In particular, at the full polarization point, for any 

�0.5
c, we find that

��T = 0,
 � 0.5
c,
 = �
� =
N�g
B�2

4���vF�2
 . �27�

We have also verified that this same result for the suscepti-
bility is also obtained for other cases outside the full polar-
ization point, e.g., for 
�
c, with any value of the asym-
metry �
, or for 
�0.5
c and �
�
c. Note that this result
includes the case leading to Eq. �26�, for the special case of

=
c. The curves starting at the dotted line in Fig. 6 corre-
spond exactly to examples of these cases with the dotted line
obtained when 
=0.7�0 is substituted in Eq. �27�.

The parameters determining the result given by Eq. �27�,
together with those determining Eq. �25�, show that there are
two major regions of parameters, at zero temperature, that
preclude the Pauli magnetic susceptibility for attaining a
value. We find that the Pauli magnetic susceptibility jumps
discontinuously from zero to the value given by Eq. �25�, for

+�
=
c, with 
�
c and �
�
c, and then it jumps
again from the value given by Eq. �25� to the limiting lower
value of susceptibility given by Eq. �27�, obtained for 

=0.5
c. For any other possible value that the magnetic sus-
ceptibility can have, it will be larger than the value obtained
from Eq. �27�. This behavior for the magnetic susceptibility
could, in principle, be tested experimentally, induced by ei-
ther a change in chemical potential �e.g., by increasing the
doping concentration in planar systems� or by an increase in
the magnetic Zeeman field �thus increasing the spin asym-
metry�.

We also note that, as we have seen in the previous section
since for any value of 
�
c the value of asymmetry �

=
c will lead to the phase transition. This value of asymme-
try corresponds to a critical magnetic field for the chiral
phase transition. Since �
c=�0=g
BB0,c /2, we find that this
critical magnetic field is given by

B0,c =
2�0

g
B
, �28�

where we have used that 
c=�0. We may compare this re-
sult, for example, with that of MIT �Refs. 1 and 23�,

Bpol =
2EF

g�
B
, �29�

where EF is the Fermi energy, g� is the effective Lande g
factor, and m� is the effective mass.

V. CONCLUSIONS

To summarize, we have investigated the mean-field phase
diagram of planar systems, that can be modeled with a four-
Fermi type of model, upon asymmetric doping. We have ob-
tained the magnetization and magnetic susceptibility for this
system. The analysis made in this work can be of relevance
in studies of many planar systems of interest in condensed
matter, like, for example, organic conductors made of poly-
mer films and graphene. In particular, regarding the zero-
temperature magnetic susceptibility of these systems, we
have predicted that it can change abruptly from zero to the
value given by Eq. �25�, when increasing either the doping or

FIG. 6. �Color online� The magnetic susceptibility as a function
of the temperature for 
=0.7�0, for the values of the asymmetry
�
=0.7,0.8,0.9,1.0,1.1 �in units of �0�.
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the magnetic Zeeman field, such that 
↑ crosses a critical
doping value given by 
c. Then, it can jump again abruptly
up to the point given by Eq. �27� with the minimum value
attained for 
=0.5
c. This is a direct prediction of our re-
sults that could be tested experimentally.

As far the dependence on temperature is concerned, we
have obtained that the magnetic susceptibility can have quite
different behaviors depending whether the system is below
or above the full polarization point 
=�
. Below the full
polarization point, 
��
, while in the chiral broken phase
the magnetic susceptibility increases nonlinearly with the
temperature, in the chiral symmetric phase it tends to a linear
function of the temperature. Unfortunately, it seems that
there is still so few or none, to our knowledge, experimental
results for the magnetic susceptibility of planar systems of
the type that could be modeled by the model studied here,
such as planar polymers or graphene, so to be able to com-
pare with our findings. Even so, despite the very different
nature, we recall that there are measurements of the behavior
of the magnetic susceptibility with the temperature for metal
alloys, most notably titanium based,24 that displays exactly
the same behavior as we found here, increasing almost lin-
early with the temperature, while the sudden change in the
susceptibility at the chiral phase-transition point seems to be
analogous to the behavior seen in the measured susceptibility
of blue bronze �K0.3MoO3� �Ref. 25� and indicative of a
Peierls transition there. The behavior of the magnetic suscep-
tibility changes again as we go above the full polarization
point. For 
��
 the magnetic susceptibility decreases when
the temperature increases. In particular, for high tempera-
tures, T��0, it obeys the Curie-Weiss law. The applied mag-
netic field is then determinant on the type of the behavior
observed for the magnetic susceptibility. There is a critical
magnetic field, proportional to the chemical potential �the
doping concentration� that determines the two behaviors for
the magnetic susceptibility as a function of the temperature.
We recall that there is a similar behavior seen in pristine
graphite,26 where for low magnetic fields the magnetic sus-
ceptibility is observed to increase with the temperature,
while for large fields it goes down with the temperature. The
major difference there with what we see here is that graphite
is diamagnetic while our results reflect the behavior of a
paramagnetic material. We hope that in the future there will
be measurements of the Pauli magnetic susceptibility for pla-
nar systems so to be able to more closely compare with the
results we have obtained here.

Our results have also shown that the Zeeman effect in
these planar systems tends to weaken the chiral symmetry,
thus, the insulating to metal transition may happen at a
smaller critical temperature in the presence of a Zeeman
field. This behavior, due to an increasing magnetic Zeeman
field, is exactly the opposite to what is observed when a
perpendicular magnetic field is applied to these systems �see,
e.g., Refs. 27 and 28�, in which case the chiral symmetry
breaking becomes stronger by the effect of the magnetic field
and, thus, the transition happens at a higher temperature in
the presence of a perpendicular magnetic field. These two
opposite effects caused by magnetic fields, when applied par-
allel or perpendicular to the system’s plane, can be a useful
tool to regulate the insulating/metal behaviors for these pla-
nar systems, when the parallel and perpendicular fields are
applied simultaneously and independently, opening interest-
ing possibilities for uses of these type of materials in practi-
cal applications as electronic devices. Further studies on the
magnetic properties of these systems we hope to make and to
report on them elsewhere in the future.

Finally, since in most realistic experiments the measured
quantities of interest are related to electric transport, it is
expected also in those cases the Zeeman splitting to have
important effects. However, a calculation of conductivity ef-
fects and transport properties cannot be addressed with the
methods we used here, based on the calculation of the effec-
tive potential �free energy�, which are more suitable for the
analysis of the phase structure of the model. But based on
experimental studies of an in-plane magnetic field, for ex-
ample, in graphene, the Zeeman splitting has been shown to
be important in both the spin transport and conductance fluc-
tuations properties.8 It has also been shown that the Zeeman
splitting leads to the spectrum of the effective single-particle
Hamiltonian exactly as required by the observed pattern of
quantization of Hall conductivity.15 These are interesting ef-
fects associated with the electronic transport properties of
realistic systems, that we hope to present in the future and
based on the model we have studied here.
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